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Abstract

Clustering video sequences in order to infer and extract
activities from a single video stream is an extremely im-
portant problem and has significant potential in video in-
dexing, surveillance, activity discovery and event recogni-
tion. Clustering a video sequence into activities requires
one to simultaneously recognize activity boundaries (activ-
ity consistent subsequences) and cluster these activity sub-
sequences. In order to do this, we build a generative model
for activities (in video) using a cascade of dynamical sys-
tems and show that this model is able to capture and repre-
sent a diverse class of activities. We then derive algorithms
to learn the model parameters from a video stream and also
show how a single video sequence may be clustered into
different clusters where each cluster represents an activity.
We also propose a novel technique to build affine, view, rate
invariance of the activity into the distance metric for clus-
tering. Experiments show that the clusters found by the al-
gorithm correspond to semantically meaningful activities.

1. Introduction

Classical approaches to activity analysis and recognition
are based on building a parametric or non-parametric model
for a restricted set of pre-defined activities [1],[2]. This
approach involves an extensive and often expensive train-
ing phase where the model for each activity is learnt from
several training examples of the activity. However, in real
world applications, one is not provided with an exhaustive
set of the activities that may occur in a given setting. More-
over, this approach also requires the application to be re-
trained for every new deployment so that it is ‘aware’ of
all the activities that are expected to occur within its field
of view. These limitations have led researchers to look for
unsupervised methods for video mining. But, such unsuper-
vised approaches to mining activities from videos present a

few interesting challenges. Firstly, since the system has no
prior knowledge about the nature of the various activities,
the model for an activity must be rich enough to support a
wide variety of activities that might occur. For example, the
typical activities that occur in a parking lot are very different
from those that occur in an airport and the model must be
rich enough to accommodate both scenarios. Secondly, the
unsupervised approach has to recognize activity boundaries
and cluster consistent activity subsequences into a single
cluster. We show that a ‘cascade of dynamical systems’ is a
very rich model for activities and this model also provides
a natural way of extracting activity consistent subsequences
from a long video.

Prior Work: There has been significant interest in re-
cent years to classify videos according to the patterns of
activity in them. Such activity-based analysis has primar-
ily focused on supervised approaches which learn a prede-
fined class of activities from a training set such as HMMs
[3]. [4] computes the mean 3D structure tensor at each pixel
and uses this for automatically discovering motion patterns
in an intersection. Most earlier unsupervised approaches
to video summarization dealt with problems such as shot
boundary detection and scene classification [5]. [6] pro-
duces natural language descriptions of video by attaching
a semantic concept to the features extracted. Approaches
such as [7], [8] attempt to model the problem of learning
activity patterns as one of clustering. Most such approaches
cast it in the framework of a time-series clustering problem
by breaking down the video stream into overlapping sub-
sequences using ‘sliding-windows’, and then cluster these
subsequences. Subsequence based approaches do not ac-
count for the fact that activities may have different tempo-
ral spans. [9] presents a technique for segmenting motion
primitives. In our method, as we first find the temporal
span of each activity via segmentation, the model is able
to account for activities with vastly varying temporal spans.
Then, we model an activity as a sequence of linear time in-
variant (LTI) dynamical models. Finally, we show how to
build certain invariances into the clustering scheme.



Figure 1. System Overview

Contributions: Our contributions in this paper are
two-fold. First, we demonstrate how a cascade of LTI sys-
tems can be used to model a wide variety of activity patterns
in several domains and how to learn the models and cluster
them in a completely unsupervised manner. Then, we show
a novel way of building three types of invariances into the
distance metric used for clustering - affine invariance, a lim-
ited version of view invariance and invariance to execution
rate of activities.

Outline: Section 2 describes the features used and the
cascade of LTI systems for an activity in detail. Section 3
discusses the details of segmenting a video into action ele-
ments and learning the model parameters for each segment.
In section 4 we discuss a novel approach to build invari-
ances. Section 5 is a short discussion about some of the
properties of the model and provides experimental results.

2. Modeling Activities in Videos

An activity consists of an actor (subject) executing a se-
ries of action elements (verbs) in order to achieve a certain
goal. For example, a man driving a car into a parking lot,
parking the car, alighting from it, walking out of the parking
lot (series of action elements-verbs) contributes to a typical
activity. Any model for an activity must be able to represent
each of the verbs (action elements) separately while simul-
taneously being able to detect the boundaries between them.
The overall system overview is shown in figure 1. Each of
the components will be described in detail in the ensuing
discussion.

2.1. Modeling Action Elements

A complex activity can be broken down into its con-
stituent action elements. During each action element, the
motion of the actor remains consistent. In fact, it is this

consistency of motion that segments an activity into action
elements. Therefore, each action element is modeled using
a time invariant dynamical system and the activity is mod-
eled as a cascade of dynamical systems.

Representation Feature: Since we are interested in
mining activities from video sequences, the feature ex-
tracted from each image frame must capture the motion of
objects in that frame. Generally, optical flow serves as a
good approximation to the true motion fields. Therefore,
we use optical-flow as the feature for representing motion
in each image. We use the algorithm developed in [10] for
computing the flow. In cases where optical flow computa-
tion is not robust, one can use background subtracted masks
or even silhouettes as the feature. For the near field se-
quence shown in figure 1 (a), the corresponding background
subtracted masks are shown in figure 1 (b). The appropriate
feature to use depends on the end application. In the ensu-
ing discussions, we will assume that feature to be optical
flow, but it can also be interpreted using any other appropri-
ate feature.

Linear Dynamical System for Action Elements: As al-
ready discussed, the dynamics of each action element can be
modeled using a time-invariant dynamical system. In sev-
eral scenarios (like far-field surveillance, objects moving on
a plane etc), it is reasonable to model constant motion in the
real world using an LTI model on the image plane. Given
the boundaries between action elements, we model each of
these segments using an LTI model. Lets assume that the
P +1 consecutive frames sk, ..., sk+P belong to the kth seg-
ment and let f(i) denote the observations (flow/silhouette
etc) from that frame. Then, the dynamics during this seg-
ment can be represented as

f(t) = Cz(t) + w(t) w(t) ∼ N(0, R) (1)

z(t + 1) = Az(t) + v(t) v(t) ∼ N(0, Q) (2)

z is the hidden state vector, A the transition matrix and
C the measurement matrix. w and v are noise components
modeled as normal with 0 mean and covariance R and Q
respectively. When flow is used as the feature, we can
write similar equations for the x and y components inde-
pendently. We assume independence of flow components
for simplicity and to reduce the dimensionality of the es-
timation problem. Similar models have been successfully
applied in several tasks like dynamic texture synthesis and
analysis [11], comparing silhouette sequences [12], [13] etc.
But we differ from these as we do not assume that we know
the temporal span of the segments. We explicitly deal with
the temporal segmentation problem in section 3.1. In sum-
mary, the parametric model for each segment consists of the
measurement matrix C and the transition matrix A.

2.2. Sequence of Dynamical Systems

An activity is composed of a series of action elements.
We have modeled each action element using an LTI sys-



Figure 2. Illustration of a cascade of three linear dynamical sys-
tems. The temporal order of the execution of these dynamical
models and their switching times are shown with arrows.

tem. The activity model is now composed of a cascade or a
sequence of such dynamical systems. In reality, most activ-
ities have a very specific temporal order for the execution of
action elements. For example, if our goal is to get to the of-
fice, then the sequence of actions executed might be - drive
into parking lot, park car, alight from car, walk away from
the parking lot. Therefore, we model an activity as a cas-
cade of action elements with each action element modeled
as an LTI system. Figure 2 illustrates the complete model
for such an activity.

Switching between Dynamical Systems: In order to
completely specify the model we also need to specify the
switching times between these dynamical systems or equiv-
alently, the amount of time (or frames) spent executing an
action element i.e. the dwell time. We considered modeling
the activity as a Markov model, in which case the proba-
bility distribution of the dwell time turns out to be an ex-
ponential distribution whose mode is at 0. But, physically
the amount of time spent doing one particular action takes
a finite amount of time. Thus, to model the dwell time,
we need a continuous distribution over time that satisfies
the following requirements - a) Support set which is the en-
tire non-negative real line, b) Non-zero mode. The Gamma
distribution satisfies both the above requirements. Simpler
choices such as Gaussian, exponential, double exponential
violate one or the other requirement. Thus, we model the
dwell time for each action element as a Gamma distribution
with parameters αk and βk with αk > 1 (this constraint
ensures a non-zero mode). The Poisson distribution also
shares the above properties except that it is a discrete distri-
bution.

3. Learning the Activity Model

We have modeled an event as a cascade of dynamical
systems. But given a video sequence, we first need to seg-
ment the video into action elements and discover the rela-
tionship between them. The challenge is to accomplish all
of this in a completely unsupervised manner while being
invariant to variabilities in an event like execution rate, res-
olution of video, rotation and translation etc. We will now
describe an algorithm to automatically segment the video
and learn the model parameters in an unsupervised manner.

3.1. Discovering Action Boundaries

During each action segment, the motion of features is
modeled using an affine motion model as is usually the case
with traditional tracking algorithms. The crucial difference
is that, we do not actually segment and track individual ob-
jects in the scene, but instead model the entire feature dur-
ing a segment using the affine motion model. For the first
few (about 3 or 4) set of frames after the beginning of a new
segment, we cumulatively learn a single set of affine param-
eters for the change in the feature. For every incoming new
frame, we evaluate whether it is consistent with the predic-
tions of the learnt affine parameters. If so, we add the frame
to the current segment. Otherwise, we detect the presence
of a boundary. Learning the affine parameters for each seg-
ment can be achieved in closed-form using the properties of
the fourier-transform (FFT) [14].

This segmentation scheme is suboptimal due to the as-
sumption of affine motion. To overcome this we iterate back
and forth between learning the LTI model for each segment
and tweaking the segment boundaries till convergence is
reached. Taking the output of the above scheme as an initial
point, we learn the LTI model for each segment. Without
loss of generality, let S1 = (A1, C1) and S2 = (A2, C2) be
two adjacent segments and their corresponding LTI mod-
els. Suppose the temporal span of S1 is [t1, tb) and that
of S2 is [tb, t2]. Here tb denotes the boundary between the
segments. As will be described in section 3.2, columns of
Ck correspond to the top d principal components (PCs) of
the observations in segment k. To evaluate the boundary ac-
cording to the learnt models, we compute the reconstruction
error of all the observations according to the PCs in the cor-
responding segments. We move the boundary by an amount
τ in forward and backward directions and choose the one
that minimizes this error. Thus, we search for the minima
of the following cost functional:

∆(τ) =

tb+τX

t=t1

‚‚‚C1(C
T
1 ft) − ft

‚‚‚
2

+

t2X

t=tb+τ

‚‚‚C2(C
T
2 ft) − ft

‚‚‚
2

(3)

ft is the observation at time t and τ ∈ [−T, T ]. In our
experiments we typically chose T to be 10. The new bound-
ary is found as tnew

b = told
b +arg minτ ∆(τ). With the new

boundary the models are learnt again, and the process is re-
peated till convergence, i.e. the boundary does not change
anymore. We show some segmentation results on a near-
field video sequence of an actor performing 5 different ac-
tivities. Each activity is repeated several times at random.
Sample segments and the corresponding boundary is shown
in figure 1 (c). (More detailed results are presented in the
supplemental material [15].)

Relation with Switching Linear Dynamical Systems:
Learning the switching instants between LTI models is also
encountered in the area of Switching Linear Dynamical
Systems (SLDS). In SLDS, usually an extra hidden state



is used to model switches. Any change in this hidden state
corresponds to a switch between the LTI models such as
in [16] and [17]. Usually, the number of states to switch
amongst is assumed to be known, but we do not make any
such assumption. An approach was presented in [18] for a
special class of systems to estimate the number of states as
well as to learn the dynamics of each system. In our experi-
ments, we found that our algorithm for segmentation works
reasonably well with a far smaller computational burden.

3.2. Learning the LTI Models for each segment

As described earlier, each segment is modeled as an LTI
system. We use tools from system identification to esti-
mate the model parameters for each segment. This esti-
mate can be obtained in closed form. The algorithm is de-
scribed in [19] and adopted for texture modeling in [11].
Let observations f(1), f(2), . . . f(τ), represent the features
for the frames 1, 2, ...τ . Let [f(1), f(2), . . . f(τ)] = UΣV T

be the singular value decomposition of the data. Then
Ĉ = U, Â = ΣV T D1V (V T D2V )−1Σ−1, where D1 = [0
0;Iτ−1 0] and D2 = [Iτ−1 0;0 0]. These estimates of C and
A constitute the model parameters for each action segment.
For the case of flow, the same estimation procedure is re-
peated for the x and y-components of the flow separately.
Thus, each segment now is represented by the matrix pair
(A,C) as shown in figure 1 (d).

3.3. Clustering Action Element Prototypes

We have now segmented a long video sequence into
several distinct segments and learnt the model parameters
(Â, Ĉ) for each of these segments. Even though a long
video might consist of several segments, not all of them
will be distinct. We need to cluster these segments (fig-
ures 1 (e), (f)) to discover the distinct action elements. In
order to perform this clustering, we need a distance mea-
sure on the space of LTI models. We use subspace angles
(θi, i = 1, 2, ....n) between two ARMA models as defined
in [20].

Using these subspace angles θi, i = 1, 2, ...n, three dis-
tances, Martin distance (dM ), gap distance (dg) and Frobe-
nius distance (dF ) between the ARMA models are defined
as follows:

d2
M = ln

nY
i=1

1

cos2(θi)
, dg = sin θmax, d2

F = 2
nX

i=1

sin2 θi

(4)

We use the Frobenius distance in all the results shown in
this paper. Suppose we have N segments in the video se-
quence, then we create an N × N matrix D whose (i, j)th

element contains the distance between the models of seg-
ment i and segment j.

Clustering the Segments: Standard clustering tech-
niques like the k-Nearest Neighbors suffer from the limi-
tation that the number of cluster centers need to be known
ahead of time. But, in the current setting, we do not know
the number of clusters k. A similar problem has been tack-
led in multibody motion segmentation [21], by rearranging
the distance matrix D using row and column permutations
such that the most similar segments are clustered together
while the dissimilar segments are separated. We refer the
interested reader to [21] for details. Let the K cluster cen-
ters thus obtained be given by C1, C2, C3, . . . CK . The seg-
mented video is then given by a sequence of these labels.

3.4. Discovering the Cascade Structure

After clustering the action elements each
segment is assigned a label. Suppose
we have the following sequence of labels
(C1, C3, C2, C6, C7, C8, C1, C3, C5, C2, C6, C1, C7, C8).
Persistent activities in the video would appear as a repet-
itive sequence of these labels. From this sequence, we
need to find the approximately repeating patterns. We
say approximate because oversegmentation may cause
the patterns to be not exactly repetitive. We can say that
(C1, C3, C2) and (C6, C7, C8) are the repeating patterns,
up to one insertion error. To discover the repeating patterns,
we build n-gram statistics of the segment labels as shown
in figure 1 (g). We start by building a bi-gram, tri-gram and
four-gram models. In our experience, oversegmentation of
the video is more common than undersegmentation. Thus,
we allow for up to one insertion error while building the
n-gram statistics. We prune the bi-grams which appear as
a subsequence of a tri-gram. We prune the tri-grams in
a similar fashion. Finally, we declare the n-grams with a
count above a threshold (depending on the length of the
video) as the repeating patterns in the video. The cascade
structure of individual activities is the exact sequence of
the prototypes in the n-grams. Once we have the cascade
structure, we can go one step further and build a generative
model by learning the statistics of the duration of each
action prototype. We model the duration of each action
prototype as a Gamma distribution with parameters αk > 1
and βk. The parameters (αk, βk) are learnt directly from
the results of segmentation.

4. Building Invariances into the Distance Met-
ric

The distance metrics defined in the previous section will
break down when there is a change in viewpoint or there is
an affine transformation of the low-level features. We pro-
pose a technique to build these invariances into the distance
metrics defined above.



4.1. Affine and View Invariance

In our model, under feature level affine transforms or
view-point changes, the only change occurs in the measure-
ment equation and not the state equation. As described in
section 3.2 the columns of the measurement matrix (C) are
the principal components (PCs) of the observations of that
segment. Thus, we need to discover the transformation be-
tween the corresponding C matrices under an affine/view
change. We start by proving a theorem that relates low level
feature transforms to transformation of the principal com-
ponents.

Theorem 4.1: Let {X(p)} be a zero-mean random
field where p ∈ D1 ⊆ R2. Let {λX

n } and {φX
n } be

the eigenvalues and corresponding eigenfunctions in the
K-L expansion of the covariance function of X . Let
T : D2 −→ D1, where D2 ⊆ R2 be a continuous,
differentiable one-to-one mapping. Let {G(q)}, q ∈ D2 be
a random field derived from X as G(q) = X(T (q)). If the
Jacobian of T , denoted by JT (r), is such that det(JT (r)) is
independent of r, then the eigenvalues and eigenfunctions

of G are given by λG
n = λX

n

|JT |1/2 and φG
n (q) = φX

n (T (q))

|JT |1/2 .

Proof: Let KX(p, s) be the covariance function of X .
Then by the definition of the K-L expansion the following
equations hold.
Z

D1

KX(p, s)φX
n (s)ds = λX

n φX
n (p),

Z
D1

φX
m(s)φX

n (s) = δ(m, n)

(5)

where both p, s ∈ D1 and δ(m,n) =
{1 if m = n, 0 otherwise}. Now, {G(q)} is related to
X as G(q) = X(T (q)). For q, r ∈ D2, the covariance
function of G is given by KG(q, r) = E[G(q)G(r)] =
E[X(T (q))X(T (r))] = KX(T (q), T (r)). Now consider
the following equation.
Z

D2

KG(q, r)φX
n (T (r))dr =

Z
D2

KX(T (q), T (r))φX
n (T (r))dr

(6)

=

Z
D1

KX(p, s)φX
n (s)

1

|JT (r)|ds

(7)

where (7) is obtained by a change of variables given by
p = T (q), s = T (r), and |JT (r)| is the determinant of the
Jacobian of T with respect to r evaluated at r = T−1(s).
Now, if |JT (r)| = |JT | = constant, then it comes out of
the integral in (7), and using (5) we obtain

Z
D2

KG(q, r)φX
n (T (r))dr =

λX
n

|JT |φ
X
n (T (q)) (8)

It can further be shown that the set of functions
{φX

n (T (q))

|JT |1/2 } form an orthonormal set. Thus, we have shown

that the eigenvalues and eigenfunctions of G are given by

{ λX
n

|JT |1/2 } and {φX
n (T (q))

|JT |1/2 } respectively. The utility of this

theorem is that if the low-level features like flow/silhouettes
undergo a spatial transformation which satisfies the condi-
tions stated in the theorem, then the corresponding PCs also
undergo the same transformation.

Application to Invariances: When two images are
related by a general spatial transform (affine, homography
etc), they are related by I2(x, y) = I1(T (x, y)). Consider
the set of 2-D affine-transforms given by T (p) = Ap + t.
Writing this in inhomogeneous coordinates p = [x, y]′

T (p) =

»
a11x + a12y + t1
a21x + a22y + t2

–
(9)

The Jacobian for the transformation is given by JT =»
a11 a12

a21 a22

–
whose determinant is a constant. Thus,

by the above theorem, if a set of observations are affine
transformed then their principal components also get trans-
formed by the same affine parameters. Consider now a 2-D
plane homography given by H = [hij ]. In the inhomoge-
neous coordinates the transformation is given by

T (p) =

»
(h11x + h12y + h13)/(h31x + h32y + h33)
(h21x + h22y + h23)/(h31x + h32y + h33)

–

(10)

If h31, h32 << h33 which is often the case in small
changes in viewpoint (due to space constraints a rigorous
justification for this is provided in the supplemental mate-
rial [15]), then the Jacobian of the above transformation can

be approximated by JT = 1
h33

»
h11 h12

h21 h22

–
whose deter-

minant is also a constant. Thus, the above theorem can be
used even in the case where observations are transformed
by a homography.

Note: The theorem was proved for continuous random
fields. In real images, spatial transforms are not one-to-one
maps due to the discrete nature of the underlying lattice.
But, our experiments suggest that this theorem can be used
to get very good approximations even in the discrete case.

Modified Distance Metric: Proceeding from the
above, to match two ARMA models of the same activity
related by a spatial transformation, all we need to do is to
transform the C matrices (the observation equation). Given
two systems S1 = (A1, C1) and S2 = (A2, C2) we modify
the distance metric as

dcompensated(S1, S2) = min
T

d(T (S1), S2) (11)

where d(., .) is any of the distance metrics in (4), T is the
transformation. T (S1) = (A1, T (C1)). Columns of T (C1)
are the transformed columns of C1. The optimal transfor-
mation parameters are those that achieve the minimization



(a) (b)

Figure 3. (a)Variation of Mean Distance as viewing angle changes.
Sample views shown, (b)Histogram of difference between Frobe-
nius and dcompensated as seen from different views

in (11). Depending on the complexity of the transforma-
tion model, one can use featureless image registration tech-
niques such as [14], [22] to arrive at a good initial estimate
of T . Computing the gradient of the proposed distance met-
ric is extremely difficult due to the recursive way the sub-
space angles are defined (section 3.3). We could not arrive
at closed form expressions for the gradients. Instead, we re-
sort to using Nelder-Mead’s (NM) simplex method to per-
form the optimization. The NM method is a direct search
algorithm that is used when gradients cannot be computed
or accessed. Even though only limited convergence results
for the NM method are known, it is known to work well in
practice [23].

To illustrate the effectiveness of our proposed
technique, we conducted the following experi-
ment. We took a set of 10 dynamic textures from
http://www.cwi.nl/projects/dyntex/index.html [24]. The
textures were modeled to be lying on a plane in front of
the camera perpendicular to the optical axis, and a change
in viewing angle from 0◦ to 20◦ in increments of 5◦ was
simulated by means of a homography (0◦ corresponds to
the frontal view). The images were taken as observations.
Figure 3(a) shows how the Frobenius distance breaks-down
as the viewing angle is changed. The plot also shows
dcompensated. It can be seen that the proposed technique
indeed works better. In figure 3(b), we plot normalized
histograms of (dF − dcompensated) for same textures as
seen from different views and different textures as seen
from different views. When comparing different textures,
dcompensated is not significantly lower than dF , hence the
peak at 0. But, for the same texture as seen from different
views, we see that dcompensated is significantly lower than
dF .

4.2. Invariance to Execution Rate of Activity

While building models for activities, one also needs to
consider the effect of different execution rates of the activ-

ity [25]. In the general case, one needs to consider warp-
ing functions of the form g(t) = f(w(t)) such as in [26]
where Dynamic time warping (DTW) is used to estimate
w(t). We consider linear warping functions of the form
w(t) = qt for each action segment. Linear functions for
each segment give rise to a piece-wise linear warping func-
tion for the entire activity, which accounts for variabilities
in execution rate well. It can be shown that, under linear
warps the stationary distribution of the Markov process in
(2) does not change. Hence, a linear warp will affect only
the state equation and not the measurement equation i.e. the
A matrices and not the C matrices. Consider the state equa-
tion of a segment: X1(k) = A1X1(k− 1)+ v(k). Ignoring
the noise term for now, we can write X1(k) = Ak

1X(0).
Now, consider another sequence that is related to X1 by
X2(k) = X1(w(k)) = X1(qk). In the discrete case, for
non-integer q this is to be interpreted as a fractional sam-
pling rate conversion as encountered in several areas of
DSP. Then, X2(k) = X1(qk) = Aqk

1 X(0). i.e. the tran-
sition matrix for the second system is related to the first by
A2 = Aq

1.
Estimating q: Given two transition matrices of the

same activity but with different execution rates, we need a
technique to estimate the warp factor q. Consider the eigen-
decomposition of A1 = V1D1V

−1
1 , and A2 = V2D2V

−1
2 .

Then, for rational q, A2 = Aq
1 = V1D

q
1V

−1
1 . Thus,

D2 = Dq
1, i.e. if λ is an eigenvalue of A1, then λq is an

eigenvalue of A2 and so forth. Thus, we can get an estimate
of q from the eigenvalues of A1 and A2 as

q̂ =

P
i log

˛̨̨
λ

(i)
2

˛̨̨
P

i log
˛̨
˛λ(i)

1

˛̨
˛ (12)

where λ
(i)
2 and λ

(i)
1 are the complex eigenvalues of A2

and A1 respectively. Thus, we compensate for different ex-
ecution rates by computing q̂. In the presence of noise, the
above estimate of q may not be accurate, and can be taken
as an initial guess in an optimization framework similar to
the one proposed in section 4.1. Note that compensation for
execution rate is done only for segments which have very
similar Ĉ matrices.

5. Discussions and Experiments

Cascade of Dynamical Systems - A Grammar view-
point: The cascade of dynamical systems can be viewed as
a simplistic form of a regular expression grammar - each
discovered activity being represented as a set of produc-
tion rules leading from one state to the other. Note that this
simple grammar is learnt in a totally unsupervised fashion.
Given a training set of videos, we can segment the activ-
ity into prototypes and learn the relationships between them
as a problem of grammatical inference instead of enforcing



Activity
Type

Motif
1

Motif
2

Motif
3

Motif
4

Motif
5

Bending 10 1 0 2 1
Squatting 2 8 2 0 0
Throwing 0 0 7 0 1
Pick Phone 3 0 0 9 0
Batting 0 0 0 1 9

Table 1. Composition of the Discovered Clusters

 
(b) Automatically Discovered Labels (unsupervised−clustering)

(a) Manual Labeling

Figure 4. Color coded activity labeling for a 4000 frame video se-
quence. (a) Manual Labeling (b) Unsupervised Clustering result.
Image best viewed in color.

a linear structure. But in the completely unsupervised sce-
nario, the linear cascade is a reasonable and intuitive model.

Cascade of Dynamical Systems as a generative
model: It is important for activity models to possess both
the ability to recognize actions and the ability to generate
typical action sequences. The cascade of linear dynamical
systems model can be interpreted as a generative model. To
generate an activity, we simply follow the linear cascade of
its prototypes. The time spent in executing each individual
prototype is sampled from the distribution of its duration.

Experiments: In the experiment described in section
3.1, five different complex activities – throw, bend, squat,
bat and pick phone were discovered automatically. We were
also able to learn the cascade of dynamical systems model
in a completely unsupervised manner. We manually val-
idated the segment boundaries and the corresponding dis-
covered activities. We call each discovered repetitive pat-
tern a motif. To counter oversegmentation effects, we merge
very similar motifs. Since, a motif is a string of labels, we
used the Levenshtein distance [27] as the metric to merge
them. The classification of the activities into motifs is tabu-
lated in Table 1. We see that the table has a strong diagonal
structure indicating that each of the discovered motifs corre-
sponds to one of the activities in the dataset. Figure 4 shows
activity labels for the entire video sequence extracted man-
ually and automatically. Matching of the colors in the figure
indicate that the algorithm is able to discover and identify
activities in an unsupervised manner. We found that the er-
rors in labeling are typically near the transition between two
activities, where the actual labeling of those frames is itself
subject to confusion. To visualize the clusters and to see the
trajectories of each activity, we embedded each segment
into a six-dimensional Laplacian eigenspace. Dimensions
1-3 are shown in figure 5 and dimensions 4-6 in figure 6.
We see that the trajectories of the same activity are closely
clustered together in the Laplacian-space.

We show a few more recognition experiments based on
our modified distance metric. In the next experiment, the
setup is the same as described above. But, this time we

Figure 5. Trajectory Clusters in Laplacian Space dims 1-3. Best
viewed in color.

Figure 6. Trajectory Clusters in Laplacian Space dims 4-6. Best
viewed in color.

have 10 activities – Bend, Jog, Push, Squat, Wave, Kick,
Batting, Throw, Turn Sideways, Pick Phone. Each activity
is executed at varying rates. For each activity, a model is
learnt and stored as an exemplar. The features (flow-fields)
are then translated and scaled to simulate a camera shift and
zoom. Models were built on the new features, and tested
using the stored exemplars. We also implemented a heuris-
tic procedure in which affine transforms are compensated
for by locating the center of mass of the features and build-
ing models around its neighborhood. We call it Center of
Mass Heuristic – CMH. Recognition percentages are shown
in table 2. The baseline column corresponds to direct appli-
cation of the Frobenius distance. We see that our method
performs better in almost all cases.

We also conducted a recognition experiment on a 10
minute video sequence obtained from a far-field surveil-
lance camera. There were 4 different walking patterns (in
the location and direction of walk). A model for each of
these activities was built and a recognition experiment was
run over the entire video sequence and results were manu-
ally verified. There were 3 segments that were misclassified



Baseline CMH Our Method
Exemplars Exemplars Exemplars

Activity 1 10 1 10 1 10

1 40 0 40 40 40 50
2 0 0 0 10 70 80
3 0 0 20 40 10 20
4 40 30 10 20 30 60
5 30 30 40 20 40 40
6 10 0 40 50 30 50
7 0 10 0 30 30 70
8 0 10 30 40 0 40
9 0 40 20 20 30 70
10 0 0 10 20 40 40
Average 12 12 21 29 32 52

Table 2. Recognition accuracies for three schemes

from a total of 24 meaningful segments. All of these 3 er-
rors resulted because of a confusion between activities that
are co-located but vary only in the local direction of motion.

6. Conclusions

In this paper, we proposed a vocabulary model for dy-
namic scenes and presented algorithms for unsupervised
learning of the vocabulary from long video sequences. We
showed the efficacy of the approach using both far-field
surveillance and near-field videos. We also presented a
technique for incorporating affine and view-invariance into
the model. The results are promising and show that our
technique can be used for unsupervised activity indexing as
an initial filter for further processing.
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